Novel Observations on Thiophosphoryl-group Transfer in Sugar β -Hydroxy Phosphorodithioate Systems. Synthesis and X-Ray Molecular Structure of 1,6-Anhydro-3,4-dideoxy-3,4-epithio-2-O-(p-tolylsulfonyl)- β -D-allopyranose

Maria Michalska,^{*,}^a Wiesława Kudelska,^a January Pluskowski,^a Anna E. Kozioł^b and Tadeusz Lis^c

^a Laboratory of Organic Chemistry, Institute of Chemistry, Medical University, Muszyńskiego 1, 90-151 Łódź, Poland

^b Department of Chemistry, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland

^c Institute of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland

The reaction of 1,6;3,4-dianhydro-2-*O*-(*p*-tolylsulfonyl)- β -D-galactopyranose **6** with the triethylammonium salt of 2-mercapto-5,5-dimethyl-1,3,2-dioxaphosphorinane 2-sulfide **7**' gives the hitherto unknown 1,6-anhydro-3,4-dideoxy-3,4-epithio-2-*O*-(*p*-tolylsulfonyl)- β -D-allopyranose **8** in high yield. The intermediates in this reaction are: 1,6-anhydro-4-*S*-(5',5'-dimethyl-2'-thioxo-1',3',2'-dioxaphosphorinan-2'-yl)-4-thio-2-*O*-(*p*-tolylsulfonyl)- β -D-glucopyranose **9** and 1,6-anhydro-3-*O*-(5',5'-dimethyl-2'-thioxo-1',3',2'-dioxaphosphorinan-2'-yl)-4-thio-2-*O*-(*p*-tolylsulfonyl)- β -D-glucopyranose **10**. The former can be obtained by addition of 2-mercapto-5,5-dimethyl-1,3,2dioxaphosphorinane 2-sulfide **7** to the dianhydro sugar **6**. Formation of the latter was confirmed by ³¹P NMR spectroscopy. Comparative conformational studies of dianhydro compound **6** and of episulfide **8** were undertaken. They revealed that, despite the opposite orientation of the epoxy and epithio groups, the overall conformation of 5- and 6-membered rings remains the same. The absolute configuration of compound **6** has been determined as 1*R*,2*R*,3*S*,4*S*,5*R*, and of compound **8** as 1*R*,2*S*,3*S*,4*R*,5*R*.

Our investigations of sulfur and selenium analogues of sugar phosphates led to the elaboration of several efficient methods for the synthesis of functionalized monosaccharides.¹ The reactions of sugar oxiranes with mono- and di-thioacids of phosphorus are of particular interest from synthetic and mechanistic points of view.² One of their synthetic applications is the preparation of sugar episulfides.³ This synthesis proceeds in three steps: opening of the oxirane ring 1 by phosphorodithioic acid gives dithiophosphate 2; base-catalysed transphosphorylation leads to the intermediate mercapto phosphate 3; transformation of compound 3 into the episulfide 4 by internal nucleophilic attack of the thiolate anion on the carbon atom bound to the thiophosphate group (which serves as a good leaving group). Oxathiaphospholanes 5 can also be formed

when cyclization is facilitated by the presence of a good leaving group (e.g., $\mathbf{R}' = \mathbf{Ar}$) at phosphorus.

We have recently demonstrated that the relative rate of the thiophosphorylation step $2 \rightarrow 3^4$ depends on the spatial arrangement of the substituents involved in phosphoryl-group transfer. The most favourable arrangement for phosphoryl-group transfer within the sugar ring is diequatorial. Axial-equatorial migration is slower and *trans*-diaxial migration in a

rigid system (without the possibility of conformational changes) does not occur. In our previous studies the sugar ring in the epoxides employed was of conformation type ${}^{4}C_{1}$. The model epoxide 6^{5} used in the present investigations has a ${}^{1}C_{4}$ conformation imposed by its bicyclic system. The reacting centres are arranged *trans*-diaxially; the question is whether, in such a rigid system, transfer of the thiophosphoryl group from sulfur to oxygen and formation of the episulfide are still possible.

Results and Discussion

When equimolar amounts of the epoxide 6 and the triethylammonium salt 7' were allowed to react in boiling benzene, the episulfide 8 was formed in high yield.

To gain insight into the mechanistic aspects of the reaction, the transient adduct 9 was independently prepared from the epoxide 6 and free acid 7. The opening of the 3,4-epoxide ring of compound 6 is fully regio- and stereo-selective; it gives the *trans*-diaxial adduct 9 as the only phosphorus-containing product, in quantitative yield. The adduct 9 undergoes transphosphorylation into the mercapto thionophosphate 10 in pyridine solution at ambient temperature. However, the concentration of compound 10 in the reaction mixture is very low (as observed by ³¹P NMR spectroscopy) because it is rapidly converted into the episulfide 8. It can therefore be assumed that the transphosphorylation step $9 \rightarrow 10$ determines the rate of reaction.

We offer the following explanation of the experimental results. If transphosphorylation occurs in spite of the initial *trans*-diaxial arrangement of the reacting centres in compound 9, the molecule must undergo changes which bring together the OH and SP(S)(OR)₂ groups. The six-membered ring of the adduct 9 has some freedom to undergo the conformational change $9' \rightarrow 9''$. The C(2)-C(3)-C(4) end of the hexopyranose ring in 9' flips from chair to boat conformation, placing the reacting centres at C-3 and C-4 in favourable equatorial

positions. This helps transphosphorylation, leading to the thiono compound 10'. The latter returns to the primary chair conformation 10 in which the SH and $OP(S)(OR)_2$ groups are arranged *trans*-diaxially. Thiirane-ring closure ensues.

Structural Assignments.-The molecular structures of the oxirane 6 and the episulfide 8 have been determined by singlecrystal X-ray analysis. The chiral centres of the 1,6;3,4dianhydro-\beta-D-galactopyranose skeleton were found to have the 1R,2R,3S,4S,5R configuration while those of the 1,6anhydro-3,4-dideoxy-3,4-epithio-β-D-allopyranose system were 1R, 2S, 3S, 4R, 5R (Fig. 1). As the result of configurational changes, differences in conformation about the C(2)-C(3) and C(4)-C(5) bonds are observed (Table 1, see below), so that only the $C(1) \cdots C(4) \gamma$ -syn interaction is similar in both compounds. Despite opposite orientations of the epoxy and epithio groups, the overall conformation of the 5- and 6membered rings remains the same (Table 1, Fig. 2). The pyranose ring adopts a sofa conformation and the oxafuranose ring is half-chair. The bond distances (Table 2, see below) are equal within 3σ except for C(3)-C(4), which is significantly shorter in the oxirane than in the thiirane ring. The ptolylsulfonyl substituent, in the crystal, is nearly antiperiplanar in 1,6;3,4-dianhydro- β -D-galactopyranose derivative 6 and synclinal in 1,6-anhydro-3,4-dideoxy-3,4-epithio-β-Dallopyranose system 8.

The structure of adduct **9** was established by ¹H, ¹³C and ³¹P NMR spectroscopy. The undecoupled ³¹P signal centred at $\delta_{\rm P}$ 87.78 (CDCl₃) is a double triplet of triplets due to the coupling with two axial (³J_{P,a} 5.6 Hz) and two equatorial protons (³J_{P,e} 23.7 Hz) of the phosphorinane ring and with the equatorial 4-H proton (³J_{P,4} 16 Hz) (Fig. 3). A similar coupling

Fig. 1 Perspective views of the oxirane 6 (a) and the episulfide 8 (b) molecules with atomic labelling

Fig. 2 Diagram of the superposition of the molecular structures of 1,6;3,4-dianhydro-2-O-(p-tolylsulfonyl)- β -D-galactopyranose 6 (solid lines) and 1,6-anhydro-3,4-dideoxy-3,4-epithio-2-O-(p-tolylsulfonyl)- β -D-allopyranose 8 (dashed lines)

constant is observed for the ¹H NMR signal at $\delta_{\rm H}$ 3.6, corresponding to 4-H which is a double triplet with ${}^{3}J_{\rm P,4}$ 16.8 Hz and ${}^{3}J_{3,4} = {}^{3}J_{4,5} = 1$ Hz.

Although β -mercapto thionophosphate 10 has not been isolated from the transphosphorylation process of compound 9 in pyridine solution, its presence in the reaction medium was confirmed by the appearance of a signal at $\delta(^{31}P)$ 59.98, characteristic of this type of structure.

Phosphoromonothioate 11, the co-product of episulfide formation, was identified by comparison of its chemical-shift value with that of an authentic specimen $[\delta^{(31P)} 57.5]$. The pattern of the proton-undecoupled ³¹P signal (C₅D₅N), a triplet of triplets, characteristic of the (RO)₂P(S)O⁻ anion, supported the structure of compound 11 (Fig. 4).

Experimental

M.p.s were determined with a Boetius PHMK 05 apparatus and are uncorrected. Optical rotations were determined with a Polamat polarimeter, and are given in units of $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$. IR spectra were obtained by using a Unicam SP-200G

Table 1 Selected torsion angles (°)

Fig. 3 Undecoupled ³¹P NMR signal corresponding to compound 9

spectrophotometer. NMR spectra were recorded with Bruker 200 AC, Bruker 300 MSL and Bruker 400 AM spectrometers. ³¹P NMR spectra were measured with H_3PO_4 as external standard (Bruker 200 AC operating at 81.01 MHz). ¹H NMR spectra were measured in CDCl₃ with Me₄Si as the internal standard (Bruker 300 MSL or Bruker 400 AM spectrometers). ¹³C NMR spectra were determined on solutions in CDCl₃ with a Bruker 300 MSL spectrometer operating at 75.46 MHz. Chemical shifts are given in parts per million, the coupling constants are expressed as *J*-values in Hertz. Mass spectra were taken with LS/MS, Cs +13 KeV, matrix glycerol. Elemental analyses were performed by the Microanalytical Laboratory of the Centre of Molecular and Macromulecular Studies of the

6	·····	8		······································
5-membered ring				
C(1)-O(5)-C(5)-C(6)	46.4(4)		44.3(7)	
O(5) - C(5) - C(6) - O(6)	-36.1(4)		-33.8(7)	
C(1) - O(6) - C(6) - C(5)	12.4(5)		10.7(8)	
O(5)-C(1)-O(6)-C(6)	16.8(5)		16.6(8)	
O(6)-C(1)-O(5)-C(5)	-40.1(4)		- 38.3(7)	
6-membered ring				
O(5)-C(1)-C(2)-C(3)	-42.6(5)		-41.3(8)	
C(1) - C(2) - C(3) - C(4)	1.1(6)		2.2(10)	
C(2)-C(3)-C(4)-C(5)	2.6(7)		0.5(11)	
O(5)-C(5)-C(4)-C(3)	33.2(6)		35.1(9)	
C(1)-O(5)-C(5)-C(4)	-72.8(4)		-73.6(7)	
C(2)-C(1)-O(5)-C(5)	78.9(4)		77.6(7)	
external				
O(2)-C(2)-C(1)-O(5)	71.7(4)	O(2)-C(2)-C(1)-O(5)	81.4(7)	
O(2) - C(2) - C(3) - O(3)	178.1(4)	O(2) - C(2) - C(3) - S(1)	-40.9(8)	
O(3)-C(3)-C(2)-C(1)	-66.5(5)	S(1) - C(3) - C(2) - C(1)	78.4(8)	
O(3)-C(3)-C(4)-C(5)	106.6(5)	S(1)-C(3)-C(4)-C(5)	-111.2(7)	
O(3)-C(4)-C(5)-O(5)	101.0(5)	S(1)-C(4)-C(5)-O(5)	-40.0(8)	
C(1)-C(2)-O(2)-S(1)	98.3(3)	C(1)-C(2)-O(2)-S(2)	147.1(5)	
C(3)-C(2)-O(2)-S(1)	- 143.4(3)	C(3)-C(2)-O(2)-S(2)	-90.5(6)	

J. CHEM. SOC. PERKIN TRANS. 1 1994

Table 2Selected bond lengths (Å)

6		8	
O(3)–C(3)	1.431(6)	S(1)–C(3)	1.789(9)
O(3)–C(4)	1.429(7)	S(1)-C(4)	1.791(9)
O(5)-C(1)	1.396(6)	O(5) - C(1)	1.404(9)
O(5)–C(5)	1.434(6)	O(5) - C(5)	1.416(10)
O(6)–C(1)	1.414(6)	O(6) - C(1)	1.410(10)
O(6)–C(6)	1.427(6)	O(6) - C(6)	1.440(10)
C(1) - C(2)	1.533(6)	C(1) - C(2)	1.537(11)
C(2)-C(3)	1.496(6)	C(2)-C(3)	1.524(11)
C(3)–C(4)	1.446(8)	C(3) - C(4)	1.481(12)
C(4) - C(5)	1.502(8)	C(4) - C(5)	1.501(9)
C(5)-C(6)	1.508(7)	C(5)-C(6)	1.488(12)
S(1)-O(A)	1.434(3)	S(2) - O(A)	1.443(5)
S(1)–O(B)	1.413(4)	S(2)–O(B)	1.425(5)
S(1)-C(1P)	1.747(4)	S(2) - C(1P)	1.764(6)
O(2) - C(2)	1.448(6)	O(2) - C(2)	1.454(9)
O(2)-S(1)	1.592(3)	O(2)-S(2)	1.585(4)

light petroleum (long needles, m.p. 117-118 °C) (4 mol of 9 to 1 mol of benzene of crystallization). The mother liquors were concentrated under reduced pressure, and additional amounts of compound 9 were obtained by repeated precipitation (benzene-light petroleum). Total yield of product 9 was 1.2 g (72%), m.p. 117-118 °C [Found: C, 45.2; H, 5.2; P, 5.9. $C_{18}H_{25}O_8PS_3 \cdot 1/4 C_6H_6$ (496.56 + 19.528 = 516.088) requires C, 45.38; H, 5.17; P, 6.00%]; $[\alpha]_D^{22}$ -39.15 (c 1.8, CHCl₃); $v_{max}(KBr)/cm^{-1}$ 690 (P=S) and 3450 (OH); $\delta_{P}(CDCl_{3})$ 87.7; $\delta_{\rm H}(400 \text{ MHz}) 0.95 [3 \text{ H, s, CMe}(e)], 1.3 [3 \text{ H, s, CMe}(a)], 2.5$ (3 H, s, $MeC_{6}H_{4}$), 2.82 (1 H, d, ${}^{3}J_{3,OH}$ 5.8, OH), 3.61 (1 H, dt, ${}^{3}J_{4,P}$ 16.8, ${}^{3}J_{3,4}$ < 1, 4-H), 3.8 (1 H, dd, ${}^{2}J_{6exo,6endo}$ 8.4, ${}^{3}J_{5,6}$ 5.5, 6exo-H), 4.0 [2 H, q, ${}^{2}J_{a,e}$ 10.5, ${}^{3}J_{P,e}$ 25, 2 × OCH₂(e)], 4.15 (1 H, m, ${}^{3}J_{3,OH}$ 5.8, 3-H), 4.22 (1 H, s, $J_{1,2} < 1, J_{2,3} < 1, 2$ -H), 4.28 (1 H, d, $J_{6exo,6endo}$ 8.4, 6endo-H), 4.33 [2 H, q, ${}^{3}J_{P,a}$ 6.3, ${}^{2}J_{a,c}$ 10.5, 2 × OCH₂(a)], 4.73 (1 H, d, ${}^{3}J_{5,6exo}$ 5.5, 5-H) and 5.32 (1 H, s, 1-H); $\delta_{\rm C}$ 98.58 (C-1), 75.61 (C-2), 75.085 (d, ${}^{3}J_{\rm P,C}$ 3.4, C-3), 49.28 (C-4), 70.39 (d, ${}^{3}J_{P,C}$ 4.7, C-5), 66.91 (C-6), 21.25, 20.85 and 19.89 (3 × Me), 131.86-127.04 and 144.7 (ArC) and 31.6 (d, J 6.8, CMe_2); m/z 497 (M⁺ + H).

(b) Compound 9 can also be obtained, by allowing the dianhydride 6 to react with an equimolar amount of the acid 7 at 20 °C in benzene solution for 4 months, in quantitative yield.

Transphosphorylation of Compound 9 in Deuteriated Pyridine Monitored by ³¹P NMR Spectroscopy.—A solution of βhydroxy phosphorodithioate 9 (0.05 g) in $[^{2}H_{5}]$ pyridine (0.5 cm³) was placed in an NMR tube and the course of transphosphorylation, at room temperature, was monitored by ³¹P NMR spectroscopy until complete disappearance of the signal at $\delta(^{31}P)$ 88.08 corresponding to compound 9. The spectrum taken after 6.5 h showed two new signals, of very low intensity, at $\delta_{\rm P}$ 60.00 and 57.5 which correspond to the β mercapto thionophosphate 10 and phosphorothioate anion 11, respectively. The signal at $\delta_{\rm P}$ 60.00 showed maximum intensity after 9 h, the relative intensity being still very low. The intensity proportions of signals at $\delta_{\rm P}$ 88.08, 60.00 and 57.5 after 9 h were 14:1:0.8, respectively. After 6 days the intensity proportions changed to 4.7:0.85:14.6. The low-intensity signal corresponding to compound 10 disappeared after 18 days along with the signal corresponding to compound 9.

X-Ray Analysis.—The crystal data for compounds 6 and 8, X-ray data collection, and structure determination and refinement parameters are summarized in Table 3. Diffraction data were collected on a KM4 diffractometer. All calculations were performed using the SHELX76 program.⁸ Tables of atomic

Fig. 4 Undecoupled ³¹P NMR signal corresponding to compound 11

Polish Academy of Sciences, $\angle ddz$. Light petroleum refers to the fraction boiling in the range 40–60 °C.

Materials.—1,6;3,4-Dianhydro-2-O-(*p*-tolylsulfonyl)- β -D-galactopyranose **6** was obtained by the procedure described in ref. 5. 2-Mercapto-5,5-dimethyl-1,3,2-dioxaphosphorinane 2-sulfide was prepared by the procedure described in ref. 6.

1,6-Anhydro-3,4-dideoxy-3,4-epithio-2-O-(p-tolylsulfonyl)-β-D-allopyranose 8.—Equimolar amounts of the dianhydride 6 (1.5 g, 5 mmol), dithioacid 7 (1 g, 5 mmol) and triethylamine (0.51 g, 5 mmol) in benzene (100 cm^3) were refluxed for 40 h. The reaction mixture was washed several times with water and dried (MgSO₄). Evaporation of solvent under reduced pressure gave a semi-crystalline residue. Trituration with diethyl ether gave crystalline crude product 8, m.p. 70-80 °C. Further purification by precipitation (benzene-light petroleum) afforded the episulfide 8 (1 g, 62.5%) as crystals, m.p. 103-104 °C (Found: C, 49.6; H, 5.1. C₁₃H₁₄O₅S₂ requires C, 49.67; H, 4.68%); $[\alpha]_D^{22} - 154.05$ (c 1.8, CHCl₃); $\delta_H(300 \text{ MHz}) 5.24$ (1 H, s, 1-H), 4.65 (1 H, d, J_{2,3} 5.9, 2-H), 3.2–3.0 (2 H, m, 3- and 4-H), 4.8 (1 H, d, J_{5,6exo} 4.3, 5-H), 4.0 (1 H, d, J_{5,6} 4.5, 6endo-H), 3.82 (1 H, dd, J_{6exo} 4.3, $J_{6exo,6endo}$ 7.4 6exo-H), 2.45 (3 H, s, MeC_6H_4) and 7.9–7.2 (ArH); δ_C 100.47 (C-1), 71.77 (C-2), 29.57 (C-3), 34.54 (C-4), 71.13 (C-5), 67.73 (C-6), 145.23, 133.79, 129.98 and 127.88 (ArC) and 21.60 (Me).

Preparation of 1,6-Anhydro-4-S-(5',5'-dimethyl-2'-thioxo-1',-3',2'-dioxaphosphorinan-2'-yl)-4-thio-2-O-(p-tolylsulfonyl)- β -D-glucopyranose 9.—(a) A solution of dianhydride 6 (1.5 g, 5 mmol) and the dithioacid 7 (1 g, 5 mmol) in benzene (100 cm³) was heated under reflux for 20 h. Removal of the solvent by evaporation under reduced pressure gave a crystalline residue [δ (³¹P), 1 signal, 87.7, CHCl₃]. The residue was dissolved in benzene and the product 9 was obtained by precipitation with

Table 3 Crystal data and experimental details for 1,6;3,4-dianhydro-2-O-(p-tolylsulfonyl)- β -D-galactopyranose 6 and 1,6-anhydro-3,4-dideoxy-3,4-epithio-2-O-(p-tolylsulfonyl)- β -D-allopyranose 8

	6	8
Formula	C ₁₃ H ₁₄ O ₆ S	$C_{13}H_{14}O_5S_2$
M _r	298.31	314.37
Crystal system	orthorhombic	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$
a (Å)	6.226(1)	5.731(1)
b (Å)	13.476(2)	9.848(2)
$c(\mathbf{A})$	15.796(2)	25.259(4)
$V(\dot{A}^3)$	1325.3(8)	1425.6(6)
Z	4	4
$D_{\rm x} ({\rm g}{\rm cm}^{-3})$	1.495	1.465
<i>F</i> (000)	624	656
μ (Cu-K α) (cm ⁻¹)	23.5	34.85
Crystal size (mm)	0.6, 0.2, 0.2	0.6, 0.1, 0.2
Orientation matrix		
Number of reflections	25	25
2θ range (deg)	23-30	23–32
Scan technique	$\omega/2\theta$ -scan	$\omega/2\theta$ -scan
2θ range (deg)	4-164	4-164
hkl range	$-7 \rightarrow 7, 0 \rightarrow 17, 0 \rightarrow 20$	$0 \rightarrow 6, 0 \rightarrow 12, 0 \rightarrow 30$
Absorption corrections	none	none
Extinction parameter, $x = \frac{F(1 - x)F^2}{F(1 - x)F^2}$	$1.66(9) \times 10^{-6}$	$0.51(5) \times 10^{-6}$
$F_{\rm corr} = F(1 - xF^2/\sin\theta)$		
Collected	2772	1797
Unique	2022	1/8/
Onque Observed $(F > 2\pi)$	1012	1370
Number of non-sectors	1713	1373
Final $P(R)$	0.045 (0.0422)	0.049(0.0417)
(Λ_w)	$1/\sigma^2(F)$	$1/\sigma^2(F)$
w Max shift/esds: for non-H	0.019	0.007
and H atom parameters	0.019	0.015
Min: max ($\Delta \alpha$) [e Δ^{-3}]	$-0.32 \cdot 0.27$	$-0.32 \cdot 0.33$
Determination of the absolute		
<i>R</i> after refinement of atomic		
and remember of atomic		
scattering factors with $\Delta f'' = 0$	0.0634	0.0489
$R (\perp)$ for positive Af''	0.0679	0.0484
$R_{w(T)}$ for pegative Af''	0.0615	0.0519
Number of parameters (variables)	1918 (181)	1379 (181)
Hamilton's test	R = R (+)/R (-) - 1.104	R = R (-)/R (+) = 1.072
theoretical R	$R = R_{W}(+)/R_{W}(-) = 1.104$	$R = R_{W}(-)/R_{W}(+) = 1.072$
Correct enantiomer	$-x_{1,1737,0.005} = 1.0025$	$x_1, x_{198}, 0.005 = 1.005 \pm 0$
Contraction of the second seco		

positional and thermal parameters for correct enantiomers, and full lists of bond distances and angles, have been deposited with the CCDC.*

Acknowledgements

This research was supported by State Committee for Scientific Research, Grant No. 2 2654 92 03.

* For full details of the Cambridge Crystallographic Data Centre deposition scheme see 'Instructions for Authors', J. Chem. Soc., Perkin Trans. 1, 1994, Issue 1.

References

W. Kudelska and M. Michalska, *Tetrahedron*, 1981, **37**, 2989;
M. Michalska and J. Borowiecka, *J. Carbohydr. Chem.*, 1983, **2**, 99;
H. Bielawska and M. Michalska, *J. Carbohydr. Chem.*, 1986, **5**, 445; 1991, **10**, 107;
J. Czyżewska-Chlebny and M. Michalska,

J. Chem. Soc., Chem. Commun., 1985, 693; M. Michalska, W. Kudelska, J. Pluskowski, M. Nowińska and A. Juszczak, J. Carbohydr. Chem., 1993, 12, 833.

- 2 W. Kudelska and M. Michalska, Tetrahedron, 1986, 42, 629.
- 3 W. Kudelska and M. Michalska, *Carbohydr. Res.*, 1980, **83**, 43; W. Kudelska, M. Michalska and A. Świątek, *Carbohydr. Res.*, 1981, **90**, 1.
- 4 M. Michalska, E. Brzezińska and P. Lipka, J. Am. Chem. Soc., 1991, 113, 7945.
- 5 Methods in Carbohydrate Chemistry, eds. R. L. Whistler and M. L. Wolfrom, Academic Press, New York, 1963, vol. 2, p. 398; M. Cerny, V. Gut and J. Pacak, Collect. Czech. Chem. Commun., 1961, 26, 2425.
- 6 R. S. Edmundson, Tetrahedron, 1965, 21, 2378.
- 7 D. Rogers, Acta Crystallogr., Sect. A, 1981, 37, 734.
- 8 G. M. Sheldrick, SHELX76. Program for Crystal Structure Determination, University of Cambridge, England, 1976.

Paper 3/06924I Received 19th November 1993 Accepted 17th December 1993