Novel Observations on Thiophosphoryl-group Transfer in Sugar β-Hydroxy Phosphorodithioate Systems. Synthesis and X-Ray Molecular Structure of 1,6-Anhydro-3,4-dideoxy-3,4-epithio-2-O-(p-tolylsulfonyl)- β-D-allopyranose

Maria Michalska,*,a Wiesława Kudelska, ${ }^{a}$ January Pluskowski, anna E. Kozioł ${ }^{\boldsymbol{b}}{ }^{\text {and }}$ and Tadeusz Lis ${ }^{c}$
${ }^{a}$ Laboratory of Organic Chemistry, Institute of Chemistry, Medical University, Muszyńskiego 1. 90-151 Łódż, Poland
${ }^{\text {b }}$ Department of Chemistry, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
${ }^{c}$ Institute of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland

Abstract

The reaction of 1,6;3,4-dianhydro-2-O-(p-tolylsulfonyl)- β-D-galactopyranose 6 with the triethylammonium salt of 2-mercapto-5,5-dimethyl-1,3,2-dioxaphosphorinane 2-sulfide 7' gives the hitherto unknown 1,6-anhydro-3,4-dideoxy-3,4-epithio-2-O-(p-tolylsulfonyl)- β-D-allopyranose 8 in high yield. The intermediates in this reaction are: 1,6-anhydro-4-S-(5', 5^{\prime}-dimethyl- 2^{\prime}-thioxo$1^{\prime}, 3^{\prime}, 2^{\prime}$-dioxaphosphorinan- 2^{\prime}-yl)-4-thio-2-O-(p-tolylsulfonyl)- β-d-glucopyranose 9 and 1,6-an-hydro-3-O-($5^{\prime}, 5^{\prime}$-dimethyl- 2^{\prime}-thioxo- $1^{\prime}, 3^{\prime}, 2^{\prime}$-dioxaphosphorinan- 2^{\prime} - yl)-4-thio-2- 0 -(p-tolylsulfonyl)-β-d-glucopyranose 10. The former can be obtained by addition of 2-mercapto-5,5-dimethyl-1,3,2dioxaphosphorinane 2 -sulfide 7 to the dianhydro sugar 6. Formation of the latter was confirmed by ${ }^{31} \mathrm{P}$ NMR spectroscopy. Comparative conformational studies of dianhydro compound 6 and of episulfide 8 were undertaken. They revealed that, despite the opposite orientation of the epoxy and epithio groups, the overall conformation of 5 - and 6 -membered rings remains the same. The absolute configuration of compound 6 has been determined as $1 R, 2 R, 3 S, 4 S, 5 R$, and of compound 8 as 1R,2S,3S,4R,5R.

Our investigations of sulfur and selenium analogues of sugar phosphates led to the elaboration of several efficient methods for the synthesis of functionalized monosaccharides. ${ }^{1}$ The reactions of sugar oxiranes with mono- and di-thioacids of phosphorus are of particular interest from synthetic and mechanistic points of view. ${ }^{2}$ One of their synthetic applications is the preparation of sugar episulfides. ${ }^{3}$ This synthesis proceeds in three steps: opening of the oxirane ring 1 by phosphorodithioic acid gives dithiophosphate 2 ; base-catalysed transphosphorylation leads to the intermediate mercapto phosphate 3 ; transformation of compound 3 into the episulfide 4 by internal nucleophilic attack of the thiolate anion on the carbon atom bound to the thiophosphate group (which serves as a good leaving group). Oxathiaphospholanes 5 can also be formed

when cyclization is facilitated by the presence of a good leaving group (e.g., $\mathrm{R}^{\prime}=\mathrm{Ar}$) at phosphorus.

We have recently demonstrated that the relative rate of the thiophosphorylation step $2 \rightarrow \mathbf{3}^{4}$ depends on the spatial arrangement of the substituents involved in phosphoryl-group transfer. The most favourable arrangement for phosphorylgroup transfer within the sugar ring is diequatorial. Axialequatorial migration is slower and trans-diaxial migration in a
rigid system (without the possibility of conformational changes) does not occur. In our previous studies the sugar ring in the epoxides employed was of conformation type ${ }^{4} C_{1}$. The model epoxide 6^{5} used in the present investigations has a ${ }^{1} C_{4}$ conformation imposed by its bicyclic system. The reacting centres are arranged trans-diaxially; the question is whether, in such a rigid system, transfer of the thiophosphoryl group from sulfur to oxygen and formation of the episulfide are still possible.

Results and Discussion

When equimolar amounts of the epoxide 6 and the triethylammonium salt 7' were allowed to react in boiling benzene, the episulfide 8 was formed in high yield.

To gain insight into the mechanistic aspects of the reaction, the transient adduct 9 was independently prepared from the epoxide 6 and free acid 7. The opening of the 3,4-epoxide ring of compound 6 is fully regio- and stereo-selective; it gives the trans-diaxial adduct 9 as the only phosphorus-containing product, in quantitative yield. The adduct 9 undergoes transphosphorylation into the mercapto thionophosphate 10 in pyridine solution at ambient temperature. However, the concentration of compound 10 in the reaction mixture is very low (as observed by ${ }^{31} \mathrm{P}$ NMR spectroscopy) because it is rapidly converted into the episulfide 8. It can therefore be assumed that the transphosphorylation step $9 \rightarrow 10$ determines the rate of reaction.

We offer the following explanation of the experimental results. If transphosphorylation occurs in spite of the initial trans-diaxial arrangement of the reacting centres in compound 9, the molecule must undergo changes which bring together the OH and $\mathrm{SP}(\mathrm{S})(\mathrm{OR})_{2}$ groups. The six-membered ring of the adduct 9 has some freedom to undergo the conformational change $9^{\prime} \rightarrow 9^{\prime \prime}$. The $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ end of the hexopyranose ring in 9^{\prime} flips from chair to boat conformation, placing the reacting centres at $\mathrm{C}-3$ and $\mathrm{C}-4$ in favourable equatorial

(a)

(b)
positions. This helps transphosphorylation, leading to the thiono compound $\mathbf{1 0}^{\prime}$. The latter returns to the primary chair conformation 10 in which the SH and $\mathrm{OP}(\mathrm{S})(\mathrm{OR})_{2}$ groups are arranged trans-diaxially. Thiirane-ring closure ensues.

Structural Assignments.-The molecular structures of the oxirane 6 and the episulfide 8 have been determined by singlecrystal X-ray analysis. The chiral centres of the 1,$6 ; 3,4-$ dianhydro- β-d-galactopyranose skeleton were found to have the $1 R, 2 R, 3 S, 4 S, 5 R$ configuration while those of the $1,6-$ anhydro-3,4-dideoxy-3,4-epithio- β-d-allopyranose system were $1 R, 2 S, 3 S, 4 R, 5 R$ (Fig. 1). As the result of configurational changes, differences in conformation about the $\mathrm{C}(2)-\mathrm{C}(3)$ and $\mathrm{C}(4)-\mathrm{C}(5)$ bonds are observed (Table 1 , see below), so that only the $\mathrm{C}(1) \cdots \mathrm{C}(4) \gamma$-syn interaction is similar in both compounds. Despite opposite orientations of the epoxy and epithio groups, the overall conformation of the 5 - and 6 membered rings remains the same (Table 1, Fig. 2). The pyranose ring adopts a sofa conformation and the oxafuranose ring is half-chair. The bond distances (Table 2, see below) are equal within 3σ except for $\mathrm{C}(3)-\mathrm{C}(4)$, which is significantly shorter in the oxirane than in the thiirane ring. The p tolylsulfonyl substituent, in the crystal, is nearly antiperiplanar in 1,6;3,4-dianhydro- β-d-galactopyranose derivative 6 and synclinal in 1,6-anhydro-3,4-dideoxy-3,4-epithio- β-dallopyranose system 8 .

The structure of adduct 9 was established by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy. The undecoupled ${ }^{31} \mathrm{P}$ signal centred at $\delta_{\mathbf{P}} 87.78\left(\mathrm{CDCl}_{3}\right)$ is a double triplet of triplets due to the coupling with two axial (${ }^{3} J_{\mathrm{P}, \mathrm{a}} 5.6 \mathrm{~Hz}$) and two equatorial protons (${ }^{3} J_{\mathbf{P}, \mathrm{e}} 23.7 \mathrm{~Hz}$) of the phosphorinane ring and with the equatorial $4-\mathrm{H}$ proton (${ }^{3} J_{\mathrm{P}, 4} 16 \mathrm{~Hz}$) (Fig. 3). A similar coupling

Fig. 1 Perspective views of the oxirane $6(a)$ and the episulfide $\mathbf{8}(b)$ molecules with atomic labelling

Fig. 2 Diagram of the superposition of the molecular structures of 1,$6 ; 3,4$-dianhydro-2- O-(p-tolylsulfonyl)- β-D-galactopyranose 6 (solid lines) and 1,6-anhydro-3,4-dideoxy-3,4-epithio-2-O-(p-tolylsulfonyl)- β -D-allopyranose 8 (dashed lines)
constant is observed for the ${ }^{1} \mathrm{H}$ NMR signal at $\delta_{\mathrm{H}} 3.6$, corresponding to $4-\mathrm{H}$ which is a double triplet with ${ }^{3} J_{\mathrm{P}, 4} 16.8$ Hz and ${ }^{3} J_{3,4}={ }^{3} J_{4,5}=1 \mathrm{~Hz}$.

Although β-mercapto thionophosphate 10 has not been isolated from the transphosphorylation process of compound 9 in pyridine solution, its presence in the reaction medium was confirmed by the appearance of a signal at $\delta\left({ }^{31} \mathrm{P}\right) 59.98$, characteristic of this type of structure.

Phosphoromonothioate 11, the co-product of episulfide formation, was identified by comparison of its chemical-shift value with that of an authentic specimen [$\left.\delta\left({ }^{31} \mathrm{P}\right) 57.5\right]$. The pattern of the proton-undecoupled ${ }^{31} \mathrm{P}$ signal $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)$, a triplet of triplets, characteristic of the $(\mathrm{RO})_{2} \mathrm{P}(\mathrm{S}) \mathrm{O}^{-}$anion, supported the structure of compound 11 (Fig. 4).

Experimental

M.p.s were determined with a Boetius PHMK 05 apparatus and are uncorrected. Optical rotations were determined with a Polamat polarimeter, and are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. IR spectra were obtained by using a Unicam SP-200G

Fig. 3 Undecoupled ${ }^{31} \mathrm{P}$ NMR signal corresponding to compound 9
spectrophotometer. NMR spectra were recorded with Bruker 200 AC , Bruker 300 MSL and Bruker 400 AM spectrometers. ${ }^{31} \mathrm{P}$ NMR spectra were measured with $\mathrm{H}_{3} \mathrm{PO}_{4}$ as external standard (Bruker 200 AC operating at 81.01 MHz). ${ }^{1} \mathrm{H}$ NMR spectra were measured in CDCl_{3} with $\mathrm{Me}_{4} \mathrm{Si}$ as the internal standard (Bruker 300 MSL or Bruker 400 AM spectrometers). ${ }^{13} \mathrm{C}$ NMR spectra were determined on solutions in CDCl_{3} with a Bruker 300 MSL spectrometer operating at 75.46 MHz . Chemical shifts are given in parts per million, the coupling constants are expressed as J-values in Hertz. Mass spectra were taken with LS/MS, Cs +13 KeV , matrix glycerol. Elemental analyses were performed by the Microanalytical Laboratory of the Centre of Molecular and Macromulecular Studies of the

Table 1 Selected torsion angles $\left({ }^{\circ}\right)$

mbered ring			
$\mathrm{C}(1)-\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(6)$	46.4(4)		44.3(7)
$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(6)$	-36.1(4)		-33.8(7)
$\mathrm{C}(1)-\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(5)$	12.4(5)		10.7(8)
$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{O}(6)-\mathrm{C}(6)$	16.8(5)		16.6(8)
$\mathrm{O}(6)-\mathrm{C}(1)-\mathrm{O}(5)-\mathrm{C}(5)$	-40.1(4)		-38.3(7)
6-membered ring			
$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-42.6(5)		-41.3(8)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$1.1(6)$		$2.2(10)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	2.6 (7)		0.5(11)
$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	33.2(6)		35.1(9)
$\mathrm{C}(1)-\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(4)$	-72.8(4)		-73.6(7)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(5)-\mathrm{C}(5)$	78.9(4)		77.6(7)
external			
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(5)$	71.7(4)	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(5)$	81.4(7)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	178.1(4)	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(1)$	-40.9(8)
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	-66.5(5)	$\mathrm{S}(1)-\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	78.4(8)
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	106.6(5)	$S(1)-C(3)-C(4)-C(5)$	-111.2(7)
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)$	101.0(5)	$\mathrm{S}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)$	-40.0(8)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)-\mathrm{S}(1)$	98.3(3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)-\mathrm{S}(2)$	147.1(5)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(2)-\mathrm{S}(1)$	-143.4(3)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(2)-\mathrm{S}(2)$	-90.5(6)

Fig. 4 Undecoupled ${ }^{31} \mathrm{P}$ NMR signal corresponding to compound 11

Polish Academy of Sciences, Łódź. Light petroleum refers to the fraction boiling in the range $40-60^{\circ} \mathrm{C}$.

Materials.-1,6;3,4-Dianhydro-2-O-(p-tolylsulfonyl)- β-Dgalactopyranose 6 was obtained by the procedure described in ref. 5. 2-Mercapto-5,5-dimethyl-1,3,2-dioxaphosphorinane 2sulfide was prepared by the procedure described in ref. 6.

1,6-Anhydro-3,4-dideoxy-3,4-epithio-2-O-(p-tolylsulfonyl)- β -D-allopyranose 8.-Equimolar amounts of the dianhydride 6 $(1.5 \mathrm{~g}, 5 \mathrm{mmol})$, dithioacid $7(1 \mathrm{~g}, 5 \mathrm{mmol})$ and triethylamine ($0.51 \mathrm{~g}, 5 \mathrm{mmol}$) in benzene ($100 \mathrm{~cm}^{3}$) were refluxed for 40 h . The reaction mixture was washed several times with water and dried ($\mathbf{M g S O}_{4}$). Evaporation of solvent under reduced pressure gave a semi-crystalline residue. Trituration with diethyl ether gave crystalline crude product 8 , m.p. $70-80^{\circ} \mathrm{C}$. Further purification by precipitation (benzene-light petroleum) afforded the episulfide $8(1 \mathrm{~g}, 62.5 \%)$ as crystals, m.p. $103-104^{\circ} \mathrm{C}$ (Found: C, 49.6; H, 5.1. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~S}_{2}$ requires $\mathrm{C}, 49.67 ; \mathrm{H}$, 4.68%); $[\alpha]_{\mathrm{D}}^{22}-154.05\left(c \quad 1.8, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 5.24$ ($1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 4.65\left(1 \mathrm{H}, \mathrm{d}, J_{2,3} 5.9,2-\mathrm{H}\right), 3.2-3.0(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{and}$ $4-\mathrm{H}), 4.8\left(1 \mathrm{H}, \mathrm{d}, J_{5,6 e x o} 4.3,5-\mathrm{H}\right), 4.0\left(1 \mathrm{H}, \mathrm{d}, J_{5,6} 4.5,6\right.$ endo-H), $3.82\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \text { exo }} 4.3, J_{6 \text { exo }, 6 \text { endo }} 7.46\right.$ exo -H$), 2.45(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeC}_{6} \mathrm{H}_{4}$) and $7.9-7.2(\mathrm{ArH}) ; \delta_{\mathrm{C}} 100.47(\mathrm{C}-1), 71.77(\mathrm{C}-2)$, 29.57 (C-3), 34.54 (C-4), 71.13 (C-5), 67.73 (C-6), 145.23, 133.79, 129.98 and $127.88(\mathrm{ArC})$ and $21.60(\mathrm{Me})$.

Preparation of 1,6-Anhydro-4-S-(5',5'-dimethyl-2'-thioxo-1',$3^{\prime}, 2^{\prime}$-dioxaphosphorinan-2'-yl)-4-thio-2-O-(p-tolylsulfonyl)- β -D-glucopyranose 9.-(a) A solution of dianhydride $6(1.5 \mathrm{~g}$, $5 \mathrm{mmol})$ and the dithioacid $7(1 \mathrm{~g}, 5 \mathrm{mmol})$ in benzene $\left(100 \mathrm{~cm}^{3}\right)$ was heated under reflux for 20 h . Removal of the solvent by evaporation under reduced pressure gave a crystalline residue [$\delta\left({ }^{31} \mathrm{P}\right), 1$ signal, $\left.87.7, \mathrm{CHCl}_{3}\right]$. The residue was dissolved in benzene and the product 9 was obtained by precipitation with

Table 2 Selected bond lengths (\AA)

$\mathbf{6}$		$\mathbf{8}$	
$\mathrm{O}(3)-\mathrm{C}(3)$	$1.431(6)$	$\mathrm{S}(1)-\mathrm{C}(3)$	$1.789(9)$
$\mathrm{O}(3)-\mathrm{C}(4)$	$1.429(7)$	$\mathrm{S}(1)-\mathrm{C}(4)$	$1.791(9)$
$\mathrm{O}(5)-\mathrm{C}(1)$	$1.396(6)$	$\mathrm{O}(5)-\mathrm{C}(1)$	$1.404(9)$
$\mathrm{O}(5)-\mathrm{C}(5)$	$1.434(6)$	$\mathrm{O}(5)-\mathrm{C}(5)$	$1.416(10)$
$\mathrm{O}(6)-\mathrm{C}(1)$	$1.414(6)$	$\mathrm{O}(6)-\mathrm{C}(1)$	$1.410(10)$
$\mathrm{O}(6)-\mathrm{C}(6)$	$1.427(6)$	$\mathrm{O}(6)-\mathrm{C}(6)$	$1.440(10)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.533(6)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.537(11)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.496(6)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.524(11)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.446(8)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.481(12)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.502(8)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.501(9)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.508(7)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.488(12)$
$\mathrm{S}(1)-\mathrm{O}(\mathrm{A})$	$1.434(3)$	$\mathrm{S}(2)-\mathrm{O}(\mathrm{A})$	$1.443(5)$
$\mathrm{S}(1)-\mathrm{O}(\mathrm{B})$	$1.413(4)$	$\mathrm{S}(2)-\mathrm{O}(\mathrm{B})$	$1.425(5)$
$\mathrm{S}(1)-\mathrm{C}(1 \mathrm{P})$	$1.747(4)$	$\mathrm{S}(2)-\mathrm{C}(1 \mathrm{P})$	$1.764(6)$
$\mathrm{O}(2)-\mathrm{C}(2)$	$1.448(6)$	$\mathrm{O}(2)-\mathrm{C}(2)$	$1.454(9)$
$\mathrm{O}(2)-\mathrm{S}(1)$	$1.592(3)$	$\mathrm{O}(2)-\mathrm{S}(2)$	$1.585(4)$

light petroleum (long needles, m.p. $\left.117-118^{\circ} \mathrm{C}\right)(4 \mathrm{~mol}$ of 9 to 1 mol of benzene of crystallization). The mother liquors were concentrated under reduced pressure, and additional amounts of compound 9 were obtained by repeated precipitation (benzene-light petroleum). Total yield of product 9 was 1.2 g (72%), m.p. $117-118^{\circ} \mathrm{C}$ [Found: C, $45.2 ; \mathrm{H}, 5.2$; P, 5.9. $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{8} \mathrm{PS}_{3} \cdot 1 / 4 \mathrm{C}_{6} \mathrm{H}_{6}(496.56+19.528=516.088)$ requires C, $45.38 ; \mathbf{H}, 5.17 ; \mathbf{P}, 6.00 \%] ;[\alpha]_{\mathrm{D}}^{22}-39.15\left(c 1.8, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 690(\mathrm{P}=\mathrm{S})$ and $3450(\mathrm{OH}) ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 87.7$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.95[3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}(\mathrm{e})], 1.3$ [$\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}(\mathrm{a})\right], 2.5$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}_{6} \mathrm{H}_{4}\right), 2.82\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J_{3, \mathrm{OH}} 5.8, \mathrm{OH}\right), 3.61(1 \mathrm{H}, \mathrm{dt}$, $\left.{ }^{3} J_{4, \mathrm{P}} 16.8,{ }^{3} J_{3,4}<1,4-\mathrm{H}\right), 3.8\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\text {6exo, } \text { endo }} 8.4,{ }^{3} J_{5,6} 5.5\right.$, 6 exo-H), $4.0\left[2 \mathrm{H}, \mathrm{q},{ }^{2} J_{\mathrm{a}, \mathrm{e}} 10.5,{ }^{3} J_{\mathrm{P}, \mathrm{e}} 25,2 \times \mathrm{OCH}_{2}(\mathrm{e})\right], 4.15$ $\left(1 \mathrm{H}, \mathrm{m},{ }^{3} J_{3, \mathrm{OH}} 5.8,3-\mathrm{H}\right), 4.22\left(1 \mathrm{H}, \mathrm{s}, J_{1,2}<1, J_{2,3}<1,2-\mathrm{H}\right)$, $4.28\left(1 \mathrm{H}, \mathrm{d}, J_{6 \text { exo } 0.6 \text { endo }} 8.4,6\right.$ endo-H), $4.33\left[2 \mathrm{H}, \mathrm{q},{ }^{3} J_{\mathrm{P}, \mathrm{a}} 6.3,{ }^{2} J_{\mathrm{a}, \mathrm{e}}\right.$ $\left.10.5,2 \times \mathrm{OCH}_{2}(\mathrm{a})\right], 4.73\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J_{5, \text { bexo }} 5.5,5-\mathrm{H}\right)$ and 5.32 $(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}) ; \delta_{\mathrm{C}} 98.58(\mathrm{C}-1), 75.61(\mathrm{C}-2), 75.085\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{c}} 3.4\right.$, $\mathrm{C}-3$), 49.28 (C-4), 70.39 (d, ${ }^{3} J_{\mathrm{P} . \mathrm{C}} 4.7, \mathrm{C}-5$), 66.91 (C-6), 21.25 , 20.85 and $19.89(3 \times \mathrm{Me}), 131.86-127.04$ and $144.7(\mathrm{ArC})$ and $31.6\left(\mathrm{~d}, J 6.8, C \mathrm{Me}_{2}\right) ; m / z 497\left(\mathrm{M}^{+}+\mathrm{H}\right)$.
(b) Compound 9 can also be obtained, by allowing the dianhydride 6 to react with an equimolar amount of the acid 7 at $20^{\circ} \mathrm{C}$ in benzene solution for 4 months, in quantitative yield.

Transphosphorylation of Compound 9 in Deuteriated Pyridine Monitored by ${ }^{31} \mathbf{P}$ NMR Spectroscopy.-A solution of β hydroxy phosphorodithioate $9(0.05 \mathrm{~g})$ in $\left[{ }^{2} \mathrm{H}_{5}\right]$ pyridine (0.5 cm^{3}) was placed in an NMR tube and the course of transphosphorylation, at room temperature, was monitored by ${ }^{31} \mathrm{P}$ NMR spectroscopy until complete disappearance of the signal at $\delta\left({ }^{31} \mathrm{P}\right) 88.08$ corresponding to compound 9 . The spectrum taken after 6.5 h showed two new signals, of very low intensity, at $\delta_{\mathrm{P}} 60.00$ and 57.5 which correspond to the β mercapto thionophosphate 10 and phosphorothioate anion 11, respectively. The signal at $\delta_{\mathrm{P}} 60.00$ showed maximum intensity after 9 h , the relative intensity being still very low. The intensity proportions of signals at $\delta_{\mathrm{P}} 88.08,60.00$ and 57.5 after 9 h were $14: 1: 0.8$, respectively. After 6 days the intensity proportions changed to $4.7: 0.85: 14.6$. The low-intensity signal corresponding to compound $\mathbf{1 0}$ disappeared after 18 days along with the signal corresponding to compound 9 .
X-Ray Analysis.-The crystal data for compounds 6 and 8, X-ray data collection, and structure determination and refinement parameters are summarized in Table 3. Diffraction data were collected on a KM4 diffractometer. All calculations were performed using the SHELX76 program. ${ }^{8}$ Tables of atomic

Table 3 Crystal data and experimental details for 1,6;3,4-dianhydro-2-O-(p-tolylsulfonyl)- β-d-galactopyranose 6 and 1,6-anhydro-3,4-dideoxy-3,4-epithio-2-O-(p-tolylsulfonyl)- β-D-allopyranose 8

	6	8
Formula	$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{6} \mathrm{~S}$	$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~S}_{2}$
M_{r}	298.31	314.37
Crystal system	orthorhombic	orthorhombic
Space group	$P 2,2,2{ }_{1}$	$P 2.2{ }_{1}{ }_{1}$
$a(\AA)$	6.226(1)	5.731(1)
$b(\AA)$	13.476(2)	9.848(2)
$c(\AA)$	15.796(2)	25.259(4)
$V\left(\AA^{3}\right)$	1325.3(8)	1425.6(6)
Z	4	4
$D_{x}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	1.495	1.465
$F(000)$	624	656
$\mu(\mathrm{Cu}-\mathrm{K} \alpha)\left(\mathrm{cm}^{-1}\right)$	23.5	34.85
Crystal size (mm)	0.6, 0.2, 0.2	0.6, 0.1, 0.2
Orientation matrix		
Number of reflections	25	25
2θ range (deg)	23-30	23-32
Scan technique	$\omega / 2 \theta$-scan	$\omega / 2 \theta$-scan
2θ range (deg)	4-164	4-164
$h k l$ range	$-7 \rightarrow 7,0 \rightarrow 17,0 \rightarrow 20$	$0 \rightarrow 6,0 \rightarrow 12,0 \rightarrow 30$
Absorption corrections		none
Extinction parameter, x $F_{\text {cort }}=F\left(1-x F^{2} / \sin \theta\right)$	$1.66(9) \times 10^{-8}$	$0.51(5) \times 10^{-8}$
Number of reflections Collected	2772	1787
Unique	2032	1643
Observed ($F_{\mathrm{o}} \geqslant 3 \sigma$)	1913	1379
Number of parameters	238	236
Final $R\left(R_{w}\right)$	0.045 (0.0432)	0.049 (0.0417)
${ }^{W}$	$1 / \sigma^{2}\left(F_{\mathrm{o}}\right)$	$1 / \sigma^{2}\left(F_{0}\right)$
Max shift/esds: for non-H	0.019	0.007
and H -atom parameters	0.058	0.015
$\operatorname{Min} ; \max (\Delta \rho)\left[\mathrm{e} \AA^{-3}\right]$	-0.32; 0.27	-0.32; 0.33
Determination of the absolute configuration: ${ }^{7}$		
R_{w} after refinement of atomic coordinates x, y, z using atomic scattering factors with $\Delta f^{\prime \prime}=0$	0.0634	0.0489
$R_{w}(+)$ for positive $\Delta f^{\prime \prime}$	0.0679	0.0484
$R_{\mathrm{w}}(-)$ for negative $\Delta f^{\prime \prime}$	0.0615	0.0519
Number of parameters (variables)	1918 (181)	1379 (181)
Hamilton's test theoretical R	$\begin{aligned} & R=R_{\mathrm{w}}(+) / R_{\mathrm{w}}(-)=1.104 \\ & R_{1,1737,0.005}=1.0023 \end{aligned}$	$\begin{aligned} & R=R_{\mathrm{w}}(-) / R_{\mathrm{w}}(+)=1.072 \\ & R_{1.1198,0.005}=1.00326 \end{aligned}$
Correct enantiomer	$-x,-y,-z$	x, y, z

positional and thermal parameters for correct enantiomers, and full lists of bond distances and angles, have been deposited with the CCDC.*

Acknowledgements

This research was supported by State Committee for Scientific Research, Grant No. 226549203.

* For full details of the Cambridge Crystallographic Data Centre deposition scheme see 'Instructions for Authors', J. Chem. Soc., Perkin Trans. I, 1994, Issue 1.
J. Chem. Soc., Chem. Commun., 1985, 693; M. Michalska, W. Kudelska, J. Pluskowski, M. Nowińska and A. Juszczak, J. Carbohydr. Chem., 1993, 12, 833.
2 W. Kudelska and M. Michalska, Tetrahedron, 1986, 42, 629
3 W. Kudelska and M. Michalska, Carbohydr. Res., 1980, 83, 43; W. Kudelska, M. Michalska and A. Świątek, Carbohydr. Res., 1981, 90, 1.
4 M. Michalska, E. Brzezińska and P. Lipka, J. Am. Chem. Soc., 1991, 113, 7945.
5 Methods in Carbohydrate Chemistry, eds. R. L. Whistler and M. L. Wolfrom, Academic Press, New York, 1963, vol. 2, p. 398; M. Cerny,
V. Gut and J. Pacak, Collect. Czech. Chem. Commun., 1961, 26, 2425.

6 R. S. Edmundson, Tetrahedron, 1965, 21, 2378.
7 D. Rogers, Acta Crystallogr., Sect. A, 1981, 37, 734.
8 G. M. Sheldrick, SHELX76. Program for Crystal Structure Determination, University of Cambridge, England, 1976.

References

1 W. Kudelska and M. Michalska, Tetrahedron, 1981, 37, 2989;
M. Michalska and J. Borowiecka, J. Carbohydr. Chem., 1983, 2, 99; H. Bielawska and M. Michalska, J. Carbohydr. Chem., 1986,

